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Abstract
Reichenbach’s ‘principle of the common cause’ is a foundational assumption of some
important recent contributions to quantitative social science methodology but no simi-
lar principle appears in econometrics. Reiss (Philos Sci 72:964–976, 2005) has argued
that the principle is necessary for instrumental variables methods in econometrics,
and Pearl (In Causality: Models, reasoning and inference, Cambridge: Cambridge
University Press, 2000/2009) builds a framework using it that he proposes as a means
of resolving an important methodological dispute among econometricians. Through
analysis of instrumental variables methods and the issue of multicollinearity, we aim
to show that the relationship of the principle to econometric methods is more nuanced
than implied by previous work but nevertheless may make a valuable contribution to
the coherence and validity of existing methods.

Keywords Reichenbach’s principle · Common cause principle · Instrumental
variables · Econometrics · Causal inference

1 Introduction: Reichenbach’s principle andmicroeconometrics

Reichenbach’s self-titled ‘principle of the common cause’ is concerned with the expla-
nation of improbable coincidences; “If an improbable coincidence has occurred, there
must exist a common cause” (Reichenbach 1991, p. 157). Determined by frequency
of occurrence, one might represent an improbable coincidence in probability terms as:
P(A∧ B) > P(A)P(B).1 When Reichenbach refers to a common cause, C, ‘explain-
ing’ this coincidence he means: P(A∧ B|C) = P(A|C)P(B|C) (Reichenbach 1991,

1 Where P(A ∧ B) is the probability of A and B both occuring. We will use P(A|C) to represent the
probability of A given that C is known to have occurred.
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p. 159). In short, conditional on the common cause the two events are statistically
independent. The implicit assumption is that, by virtue of temporal simultaneity of A
and B, neither event causes the other. Hence ‘Reichenbach’s Principle’ is often for-
mulated as: ‘given a statistically significant correlation between two events, either one
event is the cause of the other, or they share a common cause (or some combination
of these)’.

Subsequent analysis has suggested the principle is not true in general; there exist
cases in which sigificant correlations between variables cannot be attributed to a
causal relationship. Arntzenius (1992; 2010) provides an overview of the merits of
Reichenbach’s Principle, including counterexamples. As regards physics these con-
cern quantum phenomena and laws of coexistence, while problems possibly relevant
to social sciences concern time-series processes or deterministic systems. The validity
of the principle therefore appears to be domain-specific. As regards social science,
Reichenbach’s Principle appears to clash with a popular mantra among economists
(and others) that “correlation does not imply causation”. However, the immediate ten-
sion is superficial: the mantra states that correlation between two variables need not
imply that one causes the other, which is consistent with the suggestion that correlation
may arise from a common cause. The difference is in emphasis: Reichenbach’s Princi-
ple suggests causal inferencemay proceed from correlations, while the popular mantra
emphasises caution in doing this. This critical distinction is reflected in method. For
instance, one might contrast the use by Glymour & Scheines (2000) of Reichenbach’s
Principle as part of an axiomatic foundation for a generic, algorithmic approach to
establishing causal relations within cross-sectional datasets, with a general suspicion
of simple correlations in applied work in social science.2

The paper examines the implications of Reichenbach’s Principle for economet-
rics through two specific contributions. The first critically examines the prior claim
by Reiss (2005; 2008) that Reichenbach’s Principle is necessary for, and possibly
implicit in, economists’ instrumental variables method. Unpicking the errors in that
account enables a more nuanced assessment of the significance of Reichenbach’s
Principle in that context. At base, Reiss’s analysis is premised on a misunderstanding
of economists’ stated rationale for instrumental variable solutions to the identifica-
tion problem. Nevertheless, we argue that the Principle does raise concerns about
economists’ choice and justification of instruments when these are properly under-
stood. The second contribution considers the related issue of ‘multicollinearity’:
statistical correlation between explanatory variables. In particular, it demonstrates how
acceptance of Reichenbach’s Principle has important implications for the interpreta-
tion of regression coefficients and thereby, if correct, renders economists’ traditional
approach to multicollinearity untenable. Our objective is not to argue for or against
adoption of the Principle, but rather to give an idea of what is at stake and to con-
test and clarify some of the extant analysis in the hope that this may contribute to
a more substantive understanding of the implications of Reichenbach’s Principle for
econometrics than has been the case to date.

The modern literature on microeconometrics–the development and application of
statistical methods for empirical analysis of microeconomic issues–is primarily con-

2 The Spirtes et al. (2000) approach has also been employed in the analysis of time-series data.
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cerned with empirical identification of plausibly unconfounded effects of one variable
of interest on another, sometimes referred to as ‘the identification problem’. A con-
founding factor (‘confounder’) is one that is associated with the variables of interest
in such a way that it may lead to incorrect inferences about the presence, or extent,
of a causal relationship between those variables if not adequately accounted for.3

One approach is to ‘control’ for variation in possible confounding factors in empiri-
cal analysis when estimating causal relationships, by including possible confounders
(or proxies thereof) in the analysis. However, limits to observational data on eco-
nomic systems are such that resolving this problem by statistically controlling for
all possible confounding factors is seen as unlikely (Wooldridge 2002a, pp. 3–4).
One solution, increasingly presented using the counterfactual-based ‘Rubin Causal
Model’–see Angrist et al. (1996)–is to utilise a source of ‘exogenous’ variation in
the explanatory variable of interest. That variation can be constructed–as in the case
of a randomised control trial (RCT)–or the result of a ‘natural experiment’ that pro-
vides ‘serendipitous randomization’ (see DiNardo (2008), or Rosenzweig & Wolpin
(2000) on “natural ‘natural experiments’"). Where randomization has not occurred,
researchers may use ‘quasi-random’ variation in which there is a source of variation
that is not strictly random but is ‘plausibly exogenous’ under certain assumptions or
conditions.4 A variable representing the source of such variation is one form of an
‘instrumental variable’, a formal definition of which is provided below.

Although the willingness to explicitly connect identification with claims about
causal relationships has varied over the history of econometrics, current confidence in
methods like those above is such that Angrist & Pischke (2009) frame reluctance to
do this as characteristic of a statistician rather than an econometrician. This appetite
for causal claims has, however, not been accompanied by engagement with issues
identified by philosophers such as manipulation (Woodward 2003) and interventionist
(Pearl 2009) accounts of causality. One notable lacuna for philosophers of science is
the wholesale omission of Reichenbach’s Principle. The relevance of the Principle for
econometrics has received somephilosophical attention in relation to a counterexample
proposed by Sober (2001); see for instance Hoover (2001; 2003; 2009), Steel (2003),
and Reiss (2007). As Sober’s counterexample relates to processes with ‘similar laws
of evolution’ (Arntzenius 1992) generating non-causal correlations across time, those
contributions are focused on macroeconometrics.5 In contrast to the relative neglect
of philosophical isues by economists, work by Spirtes et al. (2000) and Pearl (2009)
on the use of causal graphs for algorithmic identification of causal relationships is
explicitly premised on Reichenbach’s Principle. Arntzenius (1992), for instance, has
stated–in reference to the work of Spirtes et al.–that “[the common cause principle]
appears to be an indispensable part of the best method for inferring causal structure
from statistical data in the social sciences” (emphasis added, Arntzenius 1992, 234).

3 As Pearl (2009, pp. 194–195) notes, there are some nuanced distinctions to be made between confounders
and confounding.
4 As Rosenzweig & Wolpin (2000) put it, “This approach essentially assumes that some components of
nonexperimental data are random” (my emphasis, Rosenzweig & Wolpin 2000, p. 827).
5 While macroeconometrics is mostly concerned with datasets containing observations over time (‘large T,
small N’ in econometricians’ parlance), microeconometrics focuses on single, or repeated, cross-sections
(‘large N, small T’).
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Our focus here will be on microeconometric examples and the use of purportedly
quasi-random variation to identify causal effects. To start with, we consider Reiss’s
(2005; 2008) argument that Reichenbach’s Principle is necessary for, and possibly
implicit in, economists’ instrumental variables method. Given that method’s impor-
tance in the discipline this is a weighty claim, and our first contribution will be to
argue that it is premised on a mistaken understanding of the logic of causal inference
in econometric methods. Having demonstrated the error in Reiss’s approach, we will
argue that Reichenbach’s Principle does nevertheless provide important methodolog-
ical insights into instrumental variable methods.

Our second contribution is to show how adopting Reichenbach’s Principle has
implications for empirical practice in economcis beyond those considered by Reiss,
or indeed the proponents of causal graph approaches. In particular, we consider
economists’ approach to correlations among explanatory variables in regressions,
known as ‘multicollinearity’. As we explain below, multicollinearity is the obverse of
the instrumental variables case, and therefore complements our first contribution.

Regression, instrumental variables and causal inference

For the analysis that follows, we provide a basic introduction to economists’ approach
to regression and instrumental variables analysis.6

A univariate (‘simple’) ‘regression’ refers to representation of the mean of one
random variable, y, conditional on another random variable, x , as a function of the
latter variable. By conditionality we mean: what is the average value of y given that
x takes on some specific value x0? We can write this as: E(y|x = x0). A mean
regression expresses the variable E(y|x), representing all values taken by y, as a
function of x : E(y|x) = f (x, β), where beta represents the parameters of f (·). There
is a clear asymmetry of interest, such that x is referred to as the ‘explanatory’ variable
and y as the ‘dependent’ variable, which is intended to correspond to the underlying
relationship. In the case of multivariate (or ‘multiple’) regression, we instead have
vectors x andβ representingmultiple explanatory variables and associated parameters.
For instance, if we assume the function to be linear in the parameters and variables,
we can write:7

E(y|x) = β0 + β1x1 + β2x2 + · · · + βk xk (1)

Any representation where f (·) is linear in the parameters and k > 1 is known as
a ‘multiple linear regression’. Empirical work in the social sciences, including eco-

6 See Woodward (1988) for what one might call a ‘traditional’ overview of the formalities of regression
methods directed at philosophers. Our discussion relies more on the presentations by Manski (1991) and
Wooldridge (2002a). A valuable additional reference is Morgan & Winship’s (2007) book, which provides
an overview of regression and graph-based methods within a detailed discussion of causal inference based
on counterfactuals.
7 Linearity in the parameters allows E(y|x) to be a non-linear function of the explanatory variables. E.g.
We could have E(y|x) = β0 + β1x1 + β2x2 + β3x

2
2 . The linearity assumption is convenient though not

essential.
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nomics, remains dominated by use of such regressions and for ease of exposition we
will focus on these.

So far we have said nothing of causality, nor is it necessary to do so. Regressionmay
be descriptive and the imposed asymmetry need not represent anything besides the
researcher’s interest. However, as noted, modern econometric analysis is interested in
more thanmere description of associations between variables. Consequently, textbook
analyses typically beginwith a structural equation of the dependent variable of interest
(y) that may be explicitly or implicitly causal.8 A note on terminology: structural
equationsmaybe based on explicit structuralmodels but need not be.And conceptually
there are two categories of structural equations: those used in discussions of method
that are, for that purpose, true by assumption; and, equations that represent hypotheses
about the underlying structure. The latter are the starting point for empirical analysis,
while the former are the starting point for methodological analysis.

To get to an ‘estimable’ equation one can use the fact that it is always possible to
decompose the dependent variable in ‘error form’ (Wooldridge 2002a, p. 18) as:

y = E(y|x) + u, (2)

where as a matter of definition: E(u|x) = 0. This implies, in particular, that u is
uncorrelatedwith all explanatory variables and any function thereof. If we then assume
equation (1) to be true, following the logic of the standard textbook approach, we can
write the structural equation:

y = β0 + β1x1 + β2x2 + · · · βk xk + u (3)

Given the properties of u, which now reflect assumptions about the correctness of (1)
as a representation of the underlying structure (correct functional form and explana-
tory variables), no linear dependence between any of the explanatory variables, and
all variables observable, the parameter vector β is said to be ‘identified’: it can be
represented in terms of population statistics. 9

In the usual case researchers do not have data on the entire population but rather
a sample, which may be randomly drawn, of N observations. When economists refer
to ‘running a regression’ they are typically referring to the final process of estimating
parameters of an equation using sample analogues of the population statistics men-
tioned above. Whether that estimates causal parameters depends on how accurately
the estimated equation represents the true structure. In this framework, the identifi-
cation problem concerns obtaining an empirical estimate of the parameter of interest

8 The implicit assumption of causality, whether in the presentation of methods or their application, is
usually observed in the interpretation or use of the estimates from the subsequent empirical analysis, as
noted by Woodward (1988).
9 Specifically, “β can be written in terms of population moments in observable variables”(Wooldridge
2002a, (53). Using the vector of explanatory variables x, we can write:

β = E[xT x]−1E(xT y)

This is obtained by rewriting (3) as y = xβ + u, premultiplying both sides by the transposed vector xT ,
applying the expectations operator to both sides and solving for β (noting that E[xT u] = 0).
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that corresponds to the ‘true’ value of that parameter in the data generating process-
represented by (1).

There are various obstacles to identification, most of which imply correlation
between the error term and one or more of the explanatory variables in the equa-
tion used for estimation–also referred to as an ‘endogeneity problem’. This leads to
bias in estimates (β̂) relative to the true parameter in (1): E(β̂) �= β. In practice
economists do not know what the true parameters are, but textbook empirical methods
are typically based on thought experiments of this kind.10 In what follows we will
use one important form of endogeneity known as ‘omitted variables bias’ to illustrate
the instrumental variables method. The reasons for this are two-fold. First, concern
with omitted variables bias is arguably the primary reason underlying economists’ use
of instrumental variables methods. Second, it is the logic of that approach that Reiss
(2005; 2008) seeks to critique using Reichenbach’s Principle.

As noted by Woodward (1988, p. 259), a key decision in specifying an estimable
regression equation is determining which variables should be included. The traditional
approach among applied economists has viewed mistaken inclusion of a variable not
in the true structural equation as less problematic than excluding a relevant variable.
As discussed later in the paper, that position is questionable once proper consideration
is given to the range of potential causal relationships among explanatory variables.
Exclusion of a relevant variable could be due to a flaw in economists’ a priori theory,
or because a given variable is not empirically observable. A popular example of the
latter is individuals’ intrinsic ability where a researcher is interested in the effect of
education on earnings. Ability is hypothesised to affect educational attainment and
affect earnings directly, but is unobservable and consequently acts as a confounding
factor.

To illustrate the general case, assume (4) is the true structural equation, where q
represents one or more variables that will be omitted from the final estimated equation.
We can rewrite this as an estimable equation with error term v = u + γ q. For v to
satisfy the same conditions as u–allowing least-squares estimation of β - q may not
be correlated with any elements of x.

E(y|x, q) = β0 + β1x1 + β2x2 + · · · βk xk + γ q (4)

In the event of correlation with q one can show that the estimated parameter β̂ j will
be biased in a direction dependent on the signs of corr(q, x j ) and β j . A primary
motivation of experiments that randomise realisations of x j is precisely that–in the
ideal case–this will sever any structural connections between x j and q.11 It is this
method that is closest to to the philosophical assumption of modularity and associated
definitions of causation through manipulation advocated by authors such as Hausman
& Woodward (1999) and Holland (1986), and criticised by others such as Cartwright
(2002) and Hoover (2011). For simplicity, however, our analysis will focus on the
so-called ‘instrumental variables’ (henceforth, IV) solution to the omitted variable
problem using observational data.

10 See Qin (2018) for a recent critique of that approach.
11 There is some disagreement about how this severance of relationships should be represented; see Pearl
(2009, pp. 376–377).
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Fig. 1 The standard instrumental
variables scenario

The theoretical IV solution stated in econometric textbooks is to utilise a variable (z)
not in the true structural equation, but (conditionally) correlated with the endogenous
variable (here x j ) and not correlated with the omitted variable(s) (here q). The latter
two requirements are often stated formally as:

IV1 corr(z, x j |x¬j) �= 0

IV2 corr(z, v) = 0

Where x¬j is a vector containing all explanatory variables except x j . The first condi-
tion, less often formalised, implies that the instrument be ‘redundant’ in explaining
variation in the dependent variable given the other explanatory variables:

IV3 E(y|x, q, z) = E(y|x, q)

Figure 1 illustrates this scenario using causal graphs.12

To illustrate, consider the problem of attempting to estimate the effect of additional
years of schooling (X ) on earnings (Y ) in the labour market. The estimated parame-
ter from a naive regression of earnings on schooling will likely be biased, upwards,
by a range of omitted variables (ε) that affect both earnings and years of schooling.
These include factors like family wealth, parental education, individual ability, and
geographical location. One approach to addressing that would be to include asmany of
these variables, or proxies thereof, as possible as explanatory variables in the regres-
sion. Such a strategy faces not only data limitations but also the problem of whether
researchers can be assumed to know all the relevant factors ex ante. The instrumental
variables approach proposes a seemingly much simpler solution: find one variable
that satisfies the above three conditions (IV1-IV3). One influential example utilised
the month of birth of individuals in the United States (Angrist & Krueger 1991): the
combination of legal stipulations that determined start age and the minimum age for
leaving schooling meant that month of birth (Z ) determined the amount of schooling
completed by the time a student was presentedwith the option of leaving school.13 The
argument is that such variation in schooling is independent of possible confounding

12 This is identical in structure to a graph by Pearl (Figure 7.8(a), 2009, p. 248).
13 SeeAngrist&Pischke (2009, pp. 117–120) for a summary of this example in the context of an explanation
of the instrumental variables approach.
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factors, since month of birth is independent of them. However, the latter claim cannot
be empirically tested and is therefore, in effect, an assumption premised on arguments
that are typically causal in nature.

Given IV1-IV3 one can write an estimable equation with an error term satisfying
the same conditions as in the standard regression case so that β is identified.14 And to
estimate it one could substitute the sample analogues as before.Akeypoint is thatwhile
IV1 and IV3 can be tested empirically, IV2 cannot because it concerns the unobservable
term u.15 Consequently, economists rely on qualitative ‘stories’ supporting the validity
of a given instrument. As Murray (2006) notes, “all instruments arrive on the scene
with a dark cloud of invalidity hanging overhead. This cloud never goes entirely away,
but researchers should chase away as much of the cloud as they can”(Murray 2006,
p. 114).16

Besides the details, what this abbreviated discussion should make clear is that
microeconometric methods for non-experimental data proceed from specific, ex ante
assumptions about the true underlying structural relationships.17 As we will see, this
is key to understanding the strengths and weaknesses of these methods.

2 Instrumental variable methods do not require Reichenbach’s
principle

If philosophical analyses yield genuinely important insights into econometric meth-
ods, there should be demonstrable implications for empirical analysis. Following on
work of this sort by other authors (Cartwright 1999; Hoover 2001; Reiss 2008), in
this section we consider the implications of Reichenbach’s Principle for the use of
instrumental variables in econometrics. In particular, we critically examine the claim
by Reiss (2005) that instrumental variables analysis requires Reichenbach’s Principle,
and in doing so we also seek to clarify a few potential misunderstandings regarding
econometric methods.

Reiss’s (2005) basic argument–also in Reiss (2008, pp. 126–145)—is that the IV
logic is flawed because the two key criteria typically formalised (IV1 and IV2) can be
satisfiedwithout identifying a genuine causal relationship between y and x . Given this,
Reiss proposes three additional sets of assumptions that would justify causal claims

14 The relevant expression is:

β = E[zT x]−1E(zT y)

Where z is the x vector including z and excluding x j .
15 Indeed IV1 is a serious concern in the empirical literature because of theoretical results showing the
negative consequences of ‘weak instruments’ (small value for corr(z, x j |x¬j)).
16 As another example, in a widely-cited survey article, Angrist & Krueger (2001, p. 73) state: “In our
view, good instruments often come from detailed knowledge of the economic mechanism and institutions
determining the regressor of interest”.
17 Similar approaches are also utilised in macroeconometrics, however the nature of much macroeconomic
data-in the form of time-series at the country level-is such that there are additional complications which are
outside the scope of the present paper.
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Fig. 2 Reiss’s (2005)
counterexample

based on instrumental variables and divides these into ‘stages’ of analysis. Below we
explain the flaws in that proposal, but first we state these stages for reference:

Stage 1 Assume Reichenbach’s Principle (RP), causal transitivity (T) and ‘functional
correctness’ (FC);18

Stage 2 Assume the structural error term includes all causes of the dependent variable
not specified explicitly in the structural equation, unless those causes work
through a specified variable;

Stage 3 Assume that the instrument (Z ) is a ‘causal instrumental variable’: Z is a
cause of X (‘CIV1’); Z either is not a cause of Y or is only a cause of Y
through X (‘CIV2’); Z and Y either do not have common causes, or any
common cause satisfies CIV2 (‘CIV3’) (Reiss 2007, p. 973)

Following Stage 1, Reiss proposes the causal system represented graphically in Fig.
2 as a counterexample to the claim that IV1 and IV2 suffice to identify the coefficient
on X in the structural equation.

The primary problem with Reiss’s analysis is the neglect of additional implicit,
or definitional, assumptions in addition to the explicitly stated IV1 and IV2.19 Two
assumptions implicit in (4) are: That q and each xi , i = 1 . . . k, have independent
explanatory power for y in the sense that they explain variation in y independently
of other factors; and, that no other observed or unobserved variable, including any
associated with any of the specified explanatory variables, will have independent
explanatory power for y.20 Neglect of these assumptions means that Reiss’s coun-
terexample is structurally inequivalent to the situation econometricians concerned
with omitted variable bias are seeking to address.

This oversight manifests in the counterexample in Fig. 2. In that system, the vari-
ables X and Y have a common cause (ε) so that their correlation is ‘spurious’, while
Y and Z also have a common cause (C) and Z is a cause of X . Recall the question in

18 Causal transitivity means that, “For any three variables A, B, and C, if A causes B and B causes C,
then A causes C” (Reiss 2005, p. 969). And Reiss defines functional correctness as: “A structural equation
is functionally correct if and only if it represents the true functional (but not necessarily causal) relations
among its variables”. In essence, this can be understood as meaning that an equation correctly represents
the relationship between the magnitudes of variables in the equation, but those relations need not be causal.
19 The word ‘definitional’ is intended to indicate that these assumptions are not ‘implicit’ in the sense
of being wholly unstated (as Reiss suggests later in his paper). Rather, they follow directly from initial
definitions of the problem, such as specification of the structural equations.
20 The second assumption could be strengthened by requiring that the structural equation specify all causes,
but this is not necessary for causal inference.
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omitted variables analysis: is the coefficient on a variable that genuinely belongs in the
structural equation empirically biased because of correlation with another relevant,
but omitted, variable? By contrast, Fig. 2 represents a scenario where a researcher
seeks to instrument for an irrelevant variable in the estimable equation using one that
is correlated with another omitted factor (C). It is true that this is disastrous for causal
inference. However, that is due to a failure of the economist’s ‘extra-statistical’ knowl-
edge, which manifests–through a hypothesised structural equation–in an estimable
equation that does not achieve identification of the parameter(s) of interest. Contra
Reiss: it is not a failure of the method per se.21

To be specific: the hypothesised cause (X ) has, in fact, no causal role, and the com-
mon cause structure the Z ← C → Y fork implies is disallowed by the definition
of a structural equation as made explicit in IV3.22 This oversight is related to misun-
derstanding the properties of error terms in (true) structural and estimated regression
equations.23 Indeed, as Reiss notes, if “the error terms in an equation represent the net
effect of all other causes...The above counterexample could not obtain because there
could not be a cause of Y, C, which is not represented by ε.” (Reiss 2005, p. 971).

‘Extra-statistical’ assumptions and Reichenbach’s principle

These points should further emphasise our earlier statement regarding the extent to
which microeconometricians currently rely on ex ante assumptions abut causal struc-
ture for causal inference. AsWoodward (1988; 1995) has noted, “These...assumptions
are commonly described as “a priori” or “extrastatistical," where what this means is
not that they are non-empirical or incapable of being tested, but rather that they are not
inferred just from the statistical data at hand, but rather have at least in part some other
rationale or justification” (Woodward 1988, p. 259).24 It is, correspondingly, impor-
tant to remain alive to the subtle distinctions between (micro)economists’ methods of
causal discovery and algorithmic approaches to ‘hunting causes’ (Spirtes et al., 2000;
Pearl, 2009). When it comes to non-experimental data, economists rely heavily on
a priori ‘extra-statistical’ assumptions based on theory or some kind of professional
intuition. Graph-based algorithms, by contrast, show that under a set of core, generic

21 Hoover (2007) draws attention to an analogous problem in Reiss’s reasoning about ‘collider’ variables.
22 The fact that an instrument cannot belong in the true structural equation is an assumption made clear in
a number of texts, e.g. Wooldridge (2002b, p. 517) and Pearl (Figure 7.8 (d), 2009, p. 248). Reiss actually
proposes this later in that paper (see condition CIV-2, Reiss (2005, 973)) as one of a set of assumptions
that would justify the econometrician’s approach, but this assumption clearly is made both in theory and in
practice.
23 There are two additional problems with Reiss’s argument. First, his proposed stage 2 assumption is in
fact the standard way of interpreting the error term in a hypothesised structural equation. Econometric
textbooks often make this interpretation explicit–see for instance Greene (2003, p. 8)-and it is recognised
byWoodward (1988, p. 261). Pearl endorses a conceptual understanding of such error terms as representing
omitted factors since it is a useful guide “when building, evaluating and thinking about causal models”
(Pearl 2009, p. 162-163). Second, Reiss fails to note that one can describe the IV logic without reference to
causality per se. Contra to Reiss’s criticism that “textbooks contain ‘recipes’ for econometric inference that
give the impression that econometrics can proceed without causal background assumptions” (Reiss 2005,
p. 966), econometrics can proceed without such assumptions. But, as per Cartwright’s mantra: ‘no causes
in, no causes out’, not if the interest is in causal inference.
24 We exclude Woodward’s reference to these as ‘causal’ assumptions since that remains a moot point.
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assumptions–like Reichenbach’s Principle–causal structure can, to some extent, be
inferred from purely statistical information. This is, in part, what Cartwright takes
umbrage with in arguing that the notion of causation is not generic, and one cannot
draw causal conclusions without substantive assumptions about causal structure. As
relates to common cause assumptions like Reichenbach’s Principle, the analysis of
Arntzenius (1992) would appear to indirectly support Cartwright’s stance by virtue of
his elaboration of counterexamples. Except that the counterexamples to Reichenbach’s
Principle are quite domain-specific, and his conclusion supports the view that there
exist systems of interest under which it is a valid assumption. Furthermore, Hoover
(2007) provides a detailed critique of purported counterexamples presented by Reiss
(2007).

The difference in emphasis of the two approaches is directly connected to the neces-
sity of Reichenbach’s Principle. What Reiss has done is construct a system where
the two basic correlative relationships in instrumental variable analysis are satisfied.
The axioms RP, T and FC render this a causal system with particular properties.
A counterexample is then constructed to show that such correlations can exist with-
out supporting the conclusions of the instrumental variables method. If economists
applied IV methods in a mechanical fashion based on sample statistics to obtain sup-
posedly causal parameters the example might be justified. However, economists have
tended to be uninterested in algorithmic approaches, as can been seen in the very
limited use of such methods in empirical work and in the response–or lack thereof–to
Spirtes et al. (2000), Pearl (2009) and in macroeconometrics to the general-to-specific
modelling algorithm of Hendry & Krolzig (2005).25 While Spirtes et al. (2000) and
Pearl (2009) place the burden of causal structure on Reichenbach’s Principle and
other generic assumptions, economists rely on specific theoretical ‘knowledge’. Con-
sequently, while there has been little work on this point, if anything it is the lack of a
sound methodological foundation for theoretical development, rather than empirical
method, that may turn out to be the Achilles heel of causal inference in economics.
And it has been in part the dissatisfaction with that aspect of the discipline that led
many empirical researchers to methods based on experiments that, initially, promised
less reliance on a priori theoretical assumptions. Recent work by Keane (2010) against
the possibility of ‘atheoretical’ econometrics and Heckman & Vytlacil (2007) con-
tributes to a long-standing literature (Liu, 1960; Sims, 1980) that has challenged such
propositions; whether the basic concern is assuaged or manifests in some other form
remains to be seen.

Instruments as causes

A final aspect of Reiss’ analysis that merits additional consideration is the third stage
in which he advocates for an explicitly causal interpretation of IVs. We concur with
Reiss’s conclusion, but from a different premise. The basis of Reiss’s argument is that
the theoretical basis for the IV method already contains within it causal assumptions,
As already argued above, this is wrong and it bears elaborating upon before moving

25 The actual merit of algorithmic approaches in social science is a separate, contentious issue; see the
contributions to McKim & Turner (1997) and the discussion of ‘automated discovery’ by Glymour (2004).
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to agree with the proposition that causal content be explicitly incorporated into the IV
approach.

Although in principle one could write a structural equation for an endogenous
variable with the instrument on the right-hand side, in expositions of the method the
focus is only on statistical properties of instruments. Consider a popular alternative
statement of IV1. Given data from a sample of a population, we can always estimate
a linear regression regardless of whether it will have any causal meaning. Similarly,
for a hypothetical population we can always write a linear projection of one variable
on a set of other variables. In our case the linear projection of interest is:

x j = γ0 + γ x¬j + θ z + ϕ (5)

By the definition of a linear projection, the parameters are such that the error term
has the sameproperties as the error term in the structural equation: E[ϕ|z] = 0. The key
difference is that in the structural equation the error has these properties by assumption
(it is assumed to reflect the causal structure), whereas in the linear projection case it is
by construction. IV1 is equivalent to requiring θ �= 0 in (5). Consequently, a common
empirical test of IV1 is to estimate such a regression equation and test the hypothesis
that θ = 0. However, unlike for the original structural equation, no causal foundation
is provided or implied by (5). To the contrary, as Wooldridge emphasises: “there is
nothing necessarily structural about [the] equation” (Wooldridge 2002a, p. 84).

However, this equivocation about causal structure in relation to instruments seems
at odds with the basic logic of causal inference in econometrics explained in Section
1.26 Absent any commitment by economists to the causal character of relationships
between the endogenous, confounding and instrumental variables, we might ask what
difference assuming Reichenbach’s Principle would make. Reichenbach’s Principle
implies that if an instrument satisfies IV1 it could be a cause or effect of the endogenous
variable, they could share a common cause, or some combination of these. Assume for
simplicity that the confounding factor is a common cause of x and y. That seems to be
the case for most illustrative examples in economics, such as individual ability being a
common cause of education and earnings, or neighbourhood wealth being a common
cause of the number of police officers and the crime rate. Then causal transitivity rules-
out the instrument being caused by x , since that would imply correlation between z
and the omitted factor, violating IV2.

Therefore a useful point that emerges from combiningReichenbach’s Principlewith
a correct understanding of econometric method, is that if economists fail to address the
(potentially) causal origins of endogeneity, they cannot convincingly make a causal
case for instrument validity. And this is consistent with earlier arguments in the causal
graph literature (Spirtes et al., 2000). For instance, if economists accept RP and T
then, as a methodological point, where the endogenous explanatory variable shares
the omitted variable as a common cause with y valid instruments must:

26 It may be useful for some readers to note that within the discipline it is known that implicit in such
presentations in the econometrics literature is that if y was a cause of any explanatory variables–i.e. there
was ‘simultaneous causation’–then an explicit system of equations would be required.
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1. Be causes of the endogenous variable, or;27

2. Share a common cause with the endogenous variable.

As an example, consider Murray’s (2006) illustration of his discussion of IV methods
with well-known work by Levitt (1997; 2002) that attempts to estimate the causal
effect of changes in police numbers on crime. Because police numbers and crime
rates could have common causes, Levitt uses two separate instrumentation strategies:
first, he uses local election dates as an instrument for police numbers, arguing that
police numbers increase before elections–the instrument is effectively posited as a
direct cause; second, he uses the number of firefighters as an IV arguing that this will
change along with police numbers due to budgetary changes–the instrument shares a
common cause with the endogenous variable. Thus Levitt begins with a causal story
as to why a naive regression of crime on police numbers would likely produce biased
estimates, then he presents further causal stories to support the claim that his proposed
instruments are valid and will eliminate the endogeneity bias.

That most instruments and the ‘stories’ told to support them in the literature fol-
low this logic–from endogeneity resulting from an omitted common cause to causal
instruments–supports the assertion that the causal nature of IVs ought to be made
explicit, and that this in turn would be a worthwhile addition to the standard textbook
account. That suggestion is likely to be resisted by economists for a number of reasons,
two of which can be illustrated by actual comments from applied microeconometri-
cians at a seminar presentation of the basic argument. First, that the suggestion is akin
to proposing a line in every textbook saying, “Don’t be stupid". In other words: it is
simply obvious that a valid instrument cannot be caused by the endogenous variable.
The second comment was that no papers in the extant literature come to mind that use
any instruments other than the two sorts described, ergo the insight is valueless since
it will not change empirical practice.

The appropriate response to the second point is that it supports the view that
economists require RP and T to justify their methods, since there appear to be no
implicit or explicit assumptions within the discipline that explain this state of affairs.
The more general point is: if a causal relationship underlies the endogeneity problem,
then only instruments with certain kinds of causal relations to the endogenous vari-
able can satisfy IV1-IV3. In response to the first claim that the above implications of
Reichenbach’s Principle are ‘obvious’, we may challenge the econometrician who is
skeptical about the merits of making causal assumptions explicit to explain why a vari-
able satisfying the formal requirements, but caused by the endogenous variable, cannot
be a valid instrument. It is unlikely any answer will avoid assumptions about causal
relationships, which currently seem to be implicit in economists’ determination of the
‘plausibility’ of a given qualitative justification for instrument validity. That being so,
there is a strong case for making such assumptions explicit and Reichenbach’s Prin-
ciple would be an obvious basis on which to do so. A question that follows naturally
from that is: what might such assumptions imply for other areas of the discipline if
they were to be made explicit? It is to that question we now turn.

27 Reiss makes an argument somewhat along these lines, including a discussion of a related, intervention-
based, approach by Woodward (2003)–see Reiss (2005, pp. 972–974)–but it is afflicted by some of the
misunderstandings already described.
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3 Multicollinearity and the interpretation of regression coefficients

To consider the possible import of Reichenbach’s Principle, we focus on a specific
example: the way in which economists deal with significant (empirical) correlations
between explanatory variables, known as ‘multicollinearity’. As noted by Angrist &
Pischke (2009): “The importance of...[omitted variables bias]...[is] that if you claim an
absence of omitted variables bias, then typically you’re also saying that the regression
you’ve got is the one you want. And the regression you want usually has a causal
interpretation.” (Angrist & Pischke, 2009, p. 62). Multicollinearity is the alternative
empirical scenario to the one addressed by IV methods, where the confounding vari-
able is observed and hence can be included as a covariate in a multiple regression.
Indeed, it should be clear from Section 1 that empirical collinearity is simply a logi-
cal consequence of including a covariate that is genuinely necessary for identification.
Consequently, consideration of this issue provides a natural extension of our arguments
above.

Contrary to this seemingly obvious perspective, many textbooks treat collinearity
as arising from spurious correlation and go as far as asserting that it is simply a
sample (rather than ‘population’) problem to be resolved by more, and better, data.28

A similar attitude is evident in Blanchard’s (1987) statement that: “Multicollinearity
is God’s will, not a problem with [ordinary least squares] or statistical techniques in
general" (Blanchard 1987, p. 449). However, he advocates the use of further theoretical
assumptions to resolve the problem rather than additional data and our view is in line
with that position. In particular, given Reichenbach’s Principle one cannot simply
dismiss statistically significant correlations as happenstance; theoretical assumptions
are required that preclude these correlations from representing causal relationships,
or preclude their relevance for estimation of the parameters of interest, and those in
turn require some foundation.

To the extent that multicollinearity has drawn any sustained attention within eco-
nomics, the focus has been on perfect collinearity: for two variables this simply means
a correlation between them equal to one; with multiple variables it means that one
variable can be written as a linear combination of the others.29 For a brief period,
there was some concern about the effects of even lesser correlations on the validity of
estimates from a standard least-squares regression–see Farrar & Glauber (1967) and
Mansfield & Helms (1982)–but the modern consensus is that provided the collinearity
is not perfect, or close to perfect, there is essentially no problem. The basis for this
is a simple proof that, under the standard regression assumptions, correlation per se
does not affect the desirable properties of the least-squares estimator.

Does this result change if the correlation is due to causation? Acceptance of
Reichenbach’s Principle necessitates that question, and it may seem possible that
the result could change. However, if we represent the causal relationships using linear
equations, it is fairly straightforward to show an absence of ‘bias’ per se in the esti-

28 No particular justification for this assertion is provided, though in principle it should be testable; standard
statistical tests can be used to examine the likelihood of a given correlation being due to chance. Yet such
commentary typically makes no mention of examining the presumption of spuriousness.
29 In matrix representations the assumption of no perfect collinearity is clearly stated and known as ‘the
rank condition’.
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mated coefficients. In short: regardless of causal relationships between explanatory
variables, provided all confounding causes are included, the estimated coefficients
remain unbiased where the assumption of linearity in relations holds.30 This seems
like a reassuring result for econometricians.

The result is somewhat misleading, however, since under Reichenbach’s Principle
the parameters estimated may be conceptually different to those from scenarios where
covariates are uncorrelated. If correlation implies some form of causal relationship
between variables, then the inclusion of additional explanatory variables correlated
with the variable of interest necessitates a change in interpretation of the estimated
parameter on that variable. But how the interpretation changes will depend on the
precise nature and/or direction of the causal relationship.

To be specific, consider the causal systems represented in Fig. 3. Figs. 3.i and 3.ii
illustrate two possible causal systems under RP if we have significant correlation
between covariates.31 Assume the econometrician is interested in the effect of X on
Y , and conditions on C to avoid possible omitted variable bias. The arrow between C
and X follows from empirical correlation between these variables, and assuming RP.
The total effect of X on Y in Fig. 3.i is β∗, while the total effect of C is equal to its
direct effect and indirect effect (β∗ × β).

Absent some basis for thinking C causes X–like temporal order for instance–
collinearity could instead imply a system like Fig. 3.ii. Comparing the two systems
reveals the problem for interpretation: in 3.i the direct effect of X is the same as its
‘total effect’ (equal to all direct and indirect effects), whereas in 3.ii there is a separate
indirect effect that has been partialled-out. Interestingly, in the inclusion of covariates
to mitigate or avoid bias it is not uncommon for economists to justify inclusion by an
ex post reduction in themagnitude of the estimated coefficient on the covariate of inter-
est. While in Fig. 3.i the reduction occurs because a confounding factor is correctly
controlled for, Fig. 3.ii shows that such a reduction could occur due to partialling-out
a portion of X ’s total effect.

The problem, then, is that recently-dominant empirical methods in economics do
not demand causal assumptions regarding omitted variables or correlated explanatory
variables. That leaves open all empirical possibilities (within the limits of the original
structural equation) and can therefore can lead to inconsistencies in empirical work.
For example, researchers have often interpreted estimated parameters of explanatory
regressors symmetrically at the same time as dismissing multicollinearity as unprob-
lematic. Even where ‘controls’ are included because of hypothesised connections to a
particular explanatory variable of interest (and the associated risk of omitted variable
bias), the coefficients on all variables are typically interpreted in the same way–which
clearly makes no sense in causal systems like those illustrated. While it is true that all
estimated coefficients will represent direct effects–often called ‘partial effects’ in the
econometric literature–for many purposes (e.g. policy advice) it matters whether the
direct effect is equivalent to the total effect or not. Either can be coherently referred

30 The relevant derivations are available from the author, but the result should be unsurprising given that
the presence of causal relationships does not alter the statistical results.
31 The case of a common cause is omitted since it will suffice for us to demonstrate that at least one system
may exist that would require a reinterpretation of estimated coefficients.
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Fig. 3 Implications of multicollinearity under Reichenbach’s Principle

to as ‘the causal effect of X on Y ’, depending on what assumptions are made about
causal intermediaries.32

To avoid some of the conceptual mistakes discussed in Section 2, it is important to
reiterate that the above argument does not necessarily contradict the internal validity
of the econometric method described. Strictly, our claim is that givenRP, economists’
approach to multicollinearity is flawed. With that caveat in mind, it appears hard to
construct a non-arbitrary formulation of the control-based method that does not suf-
fer from the problem of interpretation identified above, while also allowing causal
interpretations of regression estimates. In other words, economists appeal to a causal
notion that they have not coherently articulated, but articulation thereof would throw
their preferred approach into question. As with the reluctance to commit to a causal
representation of instruments, economists have typically taken the view that it is unnec-
essary to consider the implications of a causal aspect to collinearity.33 But they have
not in any way ruled-out causal origins of such correlations. The nature of these
assumptions appears to represent an inclination to terminate consideration of causal
issues in a seemingly ad hoc manner, perhaps a vestigial trait of the causal agnosticism
mentioned in earlier sections and surveyed in more detail by Hoover (2004).

One notable exception to such agnosticism is the popular book byAngrist&Pischke
(2009). Given the authors’ explicit interest in causal issues, and intent to provide
guidance on empirical practice, their work provides a goodmeasure of the relevance of
the causally-founded problems raised above for the rationale behind, and interpretation
of, the use of covariates. Of particular relevance for our concerns is the authors’
consideration of instances in which inclusion of covariates can generate problems
instead of resolving them–an issue not addressed in many textbook accounts. The
relevant part of their account (Angrist & Pischke, 2009, pp. 59–68) focuses on what
they call the problem of ‘bad control’: “Bad controls are variables that are themselves
outcome variables in the notional experiment at hand. That is, bad controls might just
as well be dependent variables too” (my emphasis, Angrist & Pischke, 2009, p. 64)

32 Implicit in this graph is that, following Pearl (2009), all variables affecting more than one other variable
in the system are shown.
33 A partial exception is reflected in one historical practice of conducting and reporting results from
multiple regressions. The practice was to report regression results in such a way as to show how the
incremental inclusion of every additional explanatory variable (‘control’) altered the estimated parameter
on the explanatory variable of primary interest.
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The scenario they envision is illustrated in Fig. 3.iii. The concern is that if a causal
intermediary shares an unobserved common cause (W ) with the dependent variable,
conditioning on it yields a biased coefficient even where the variable of interest has
been the subject of a randomised trial. We suggest this scenario is conceptually of
second-order relative to the issues raised by contrasting Figs. 3.i and 3.ii, but it is
nevertheless important.What is of particular interest for our purposes is that the source
of Angrist and Pischke’s concern is that a researcher might include an effect of the
treatment to avoid omitted variables bias on the basis that corr(C, X) �= 0. Yet by
employing Reichenbach’s Principle it is easy to refute such logic: if a researcher is
interested in the total effect of an induced change in the variable of interest, they need
only include C in a regression if it is believed that the correlation with X implies that
C is a cause of X , or shares with it a common cause, and has an independent causal
effect on Y . In short, one would have to believe that the randomized trial departed
from the ideal in some way. Alternatively, if for some reason the researcher wanted to
include C because they are specifically interested in the causal effect of X excluding
the channel through C , then it must be acknowledged that while omitting C in the
relevant regression does avoid confounding by another variable, it also means that
the causal parameter of interest is not identified. Instead of this nuanced argument,
Angrist & Pischke’s (2009, p. 68) primary recommendation is that researchers not
condition on any variable temporally subsequent to treatment; this is a conclusion
that is overly strong and not justified by the argument they present. Consequently,
while they advocate “clear reasoning about causal channels”–primarily by identifying
temporal order or making assumptions in this regard–their analysis fails to do this in
a systematic fashion.

By comparison, it is significant that the analysis by Pearl (2009), which assumes
RP, does not suffer these weaknesses. First, that work clearly and explicitly addresses
the issue of direct and indirect effects and their policy-relevance (see for instance Pearl
2009, pp. 126–128). Second, it emphasises that a perfectly successful randomisation
serves to sever the link between a variable and all its causes in the causal system that
are not related to the experiment; indeed this assertion is fundamental to that work.
Finally, and perhaps most importantly, it considers the full range of causal structures
subsumed under economists’ correlation conditions. As a consequence, Pearl comes
to more nuanced conclusions:

• Conditioning on an effect (x j ) of xi that is affected by some other latent cause
results in a biased estimate of the direct effect of xi (excluding that via x j )

• “if we are careful never to adjust for any consequence of treatment...no bias will
emerge in randomized trials”

(my emphases, Pearl 2009, pp. 339–340)
The first point recognises that it is latent factors that cause the conditioning problem

and is likely to occur if the interest is in the direct effect.34 He does not make the error
of claiming that any temporally subsequent variable would induce a bias, though even
in that account this nuance can be lost–as illustrated by the second point which risks

34 Pearl’s graphical representation of this issue–Pearl (Fig. 11.5, 2009, p. 339)–is very similar to our Fig.
3.iii above, except that it does not include a direct (unmediated) arrow from X to Y .
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conflating issues relating to total effects and bias. The point there is that conditioning
on a consequence of treatment could mean estimating a direct rather than a total effect
if that consequence is simply a causal intermediary; whereas it is conditioning on a
consequence affected by a latent factor that leads to bias.

These issues, relating to correct interpretation of coefficients in the presence of
relationships between explanatory variables, are made explicit in structural models in
econometrics, and in what is known as ‘path analysis’, which at one point was popular
in other social sciences such as sociology. The concern with those approaches, most
particularly the former, has been that they typically require strong a priori assumptions
about relationships between variables. One response is represented by the graphical
causal search approaches developed by Spirtes et al. (2000), which promises to deliver
the causal structures considered in path analysis with weaker a priori assumptions.
In microeconomics, the dominant response has been to move away from structural
considerations entirely and utilise instead ‘design-based’methods (Angrist & Pischke,
2010) that exploit properties of the data (including the use of experiments) to get at
causal effects with minimal ex ante assumptions. However, these latter efforts to move
away from the constraints of the structural approach have been associated with the
neglect of some important methodological issues. In the case of multicollinearity, the
issue concerns the correct interpretation of multiple regression coefficients given non-
spurious collinearity among explanatory variables. Reichenbach’s Principle brings
clarity to this problem, but its adoption would also imply a fundamental shift in how
microeconometricians approach causal inference and that must also be true for any
methods–such as those proposed by Pearl (2009)–that take Reichenbach’s Principle
as axiomatic.

4 Conclusion

Our primary concern in this paper has been to address claims by Reiss (2005; 2008)
that Reichenbach’s Principle is necessary for econometricians’ instrumental variable
analysis, and by Pearl (2009) that causal graph methods premised on Reichenbach’s
Principle can serve to resolve a key intra-disciplinary conflict between structural
econometricians and experimentalists. In Section 2 we argued that the first claim
is strictly false. And while not addressing the second claim directly, in Sections 2 and
3 we showed that Reichenbach’s Principle has important implications beyond those
aspects of econometrics explicitly related to the methodological dispute in question.
Throughout, our argument has been that philosophical issues relating to causality may
be important for practice in econometrics, but that it is necessary to appreciate the full
rationale of what applied economists actually do. In particular: the distinction between
structural and regression errors; the assumptions implicit in economists’ structural
models; the difference between various types of regression model misspecifications;
and the distinction between macro- and micro-econometrics are all important.

In addition, we have suggested that Reichenbach’s Principle would have impor-
tant implications for the interpretation by economists of their own discipline, since it
would imply that all results premised on correlations or covariances are in fact causal
statements of some sort. With this caveat in mind, we use the examples of instrumen-
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tal variables analysis and economists’ treatment of collinearity between explanatory
variables to demonstrate that acceptance of Reichenbach’s Principle would provide
coherent foundations for methods that may otherwise be flawed (at least in their inter-
pretation). In the case of instrumental variables, Reichenbach’s Principle provides a
clear link between specification of the causal reasons for confounding and the causal
role required for instruments to satisfy the statistical conditions for identification of
causal parameters. In the converse case where the confounding factor is used as a
control variable, Reichenbach’s Principle allows us to demonstrate a problem with
the symmetric interpretation of coefficients in multiple regressions where statisti-
cally significant correlation between covariates is present. While these arguments and
examples are, on the one hand, somewhat more subtle than the counterexamples pro-
posed by Reiss (2005; 2008) to the current logic of instrumental variables, we suggest
they do demonstrate that Reichenbach’s Principle is relevant for (micro)econometric
methodology.

Whether microeconometricians will accepts these propositions is an entirely dif-
ferent matter. It may be that the discipline will continue to prefer a greater number
of more specific, even arbitrary, assumptions to justify conclusions that could other-
wise be reached by assuming Reichenbach’s Principle. Furthermore, the metaphysical
status of the principle remains open. There are substantive reasons to question its gen-
erality, as noted by Arntzenius (1992; 2010), and its validity may well vary within the
domains covered by the discipline of economics as a whole. Nevertheless, given the
current state of microeconometric methodology as we have characterised it, it would
appear that causal inference in this area is in need of either a principle akin to that
proposed by Reichenbach, or an expansion of the ex ante assumptions economists
typically make about causal structure.
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